Tabel periodik
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Tabel periodik unsur-unsur
Baris pada tabel disebut periode, sedangkan kolom disebut golongan. Enam golongan (kolom) mempunyai nama selain nomor: contoh, unsur golongan 17 adalah halogen, dan golongan 18 adalah gas mulia. Tabel periodik dapat digunakan untuk menurunkan hubungan antara sifat-sifat unsur, dan memperkirakan sifat unsur baru yang belum ditemukan atau disintesis. Tabel periodik memberikan kerangka kerja untuk melakukan analisis perilaku kimia, dan banyak digunakan dalam bidang kimia dan ilmu lainnya.
Meskipun ada para pendahulunya, tabel periodik Dmitri Mendeleev adalah yang paling dipercaya, dalam publikasinya, pada tahun 1869, sebagai tabel periodik yang pertama kali diakui secara luas. Ia mengembangkan tabelnya untuk menggambarkan tren periodik berdasarkan sifat-sifat unsur-unsur yang telah diketahui. Mendeleev juga memperkirakan beberapa sifat unsur-unsur yang belum diketahui yang akan mengisi ruang kosong dalam tabel tersebut. Sebagian besar prediksinya terbukti benar ketika unsur-unsur tersebut terungkap di kemudian hari. Tabel periodik Mendeleev telah dikembangkan dan dilengkapi dengan penemuan atau sintesis unsur-unsur baru dan pengembangan model teoretis baru untuk menjelaskan perilaku kimia.
Seluruh unsur dari nomor atom 1 (hidrogen) hingga 118 (ununoktium) telah ditemukan atau disintesis. Unsur yang belum dikonfirmasi adalah unsur dengan nomor atom 113, 115, 117, dan 118. Sembilan puluh empat unsur pertama terdapat secara alami, meskipun beberapa ditemukan dalam jumlah renik dan disintesis dalam laboratorium sebelum ditemukan di alam.[n 1] Unsur-unsur mulai nomor atom 95 hingga 118 adalah unsur sintetis yang dibuat di laboratorium. Bukti menunjukkan bahwa unsur-unsur nomor 95 s/d 100 sekali ditemukan di alam, tetapi saat ini tidak dijumpai lagi.[1] Sintesis unsur dengan nomor atom yang lebih besar masih terus dikembangkan. Sejumlah radionuklida sintetis atau unsur yang berada di alam telah diproduksi di laboratorium.
Tabel periodik standar memberikan informasi dasar mengenai suatu unsur. Ada juga cara lain untuk menampilkan unsur-unsur kimia dengan memuat keterangan lebih atau dari persepektif yang berbeda.
Daftar isi
- 1 Ikhtisar
- 2 Metode pengelompokan
- 3 Tren periodik
- 4 Sejarah
- 5 Tabel periodik yang berbeda
- 6 Pertanyaan terbuka dan kontroversi
- 7 Lihat pula
- 8 Catatan kaki
- 9 Referensi
- 10 Daftar pustaka
- 11 Pranala luar
Ikhtisar
Bentuk umum tabel periodik sebagai berikut| [sembunyikan] Tabel Periodik | ||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Golongan | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | ||||||||||||
| Logam alkali | Logam alkali tanah | Pnictogen | Chalcogen | Halogens | Gas Mulia | |||||||||||||||||||||||||
| Periode 1 |
||||||||||||||||||||||||||||||
| 2 | ||||||||||||||||||||||||||||||
| 3 | ||||||||||||||||||||||||||||||
| 4 | ||||||||||||||||||||||||||||||
| 5 | ||||||||||||||||||||||||||||||
| 6 | ||||||||||||||||||||||||||||||
| 7 | ||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||
Beberapa presentasi memasukkan unsur nol. yaitu unsur yang tersusun hanya dari netron saja. Misalnya dalam Kimia Antariksa.
Dalam tabel periodik standar, unsur disusun menurut kenaikan nomor atom (jumlah proton dalam inti atom). Baris (periode) baru dimulai saat kulit elektron baru mempunyai elektron pertamanya. Kolom (golongan) ditentukan berdasarkan konfigurasi elektron; unsur-unsur yang memiliki kesamaan jumlah elektron dalam subkulit tertentu berada dalam kolom yang sama (contoh: oksigen dan selenium berada di kolom yang sama karena keduanya mempunyai empat elektron pada subkulit-p terluarnya). Unsur-unsur dengan kesamaan sifat kimia biasanya jatuh ke dalam golongan yang sama pada tabel periodik, meskipun dalam blok-f, dan beberapa ditemukan di blok-d, unsur-unsur dalam periode yang sama cenderung memiliki kesamaan sifat kimia. Oleh karena itu, relatif mudah untuk memperkirakan sifat kimia suatu unsur jika diketahui sifat unsur-unsur di sekelilingnya.[3]
Hingga tahun 2016, terdapat 118 unsur yang telah dikonfirmasi pada tabel periodik, meliputi unsur 1 (hidrogen) hingga 112 (copernicum), 114 (flerovium), dan 116 (livermorium). Unsur 113, 115, 117, dan 118 telah dikonfirmasi secara resmi oleh International Union of Pure and Applied Chemistry (IUPAC) pada Desember 2015, meskipun nama resminya belum diputuskan.[4] Unsur-unsur tersebut saat ini diidentifikasi berdasarkan nomor atomnya (misal: "unsur 113), atau berdasarkan nama sistematik sementaranya ("ununtrium", simbol "Uut").[5]
Sebanyak 94 unsur terdapat secara alami; sisanya 20 unsur dari amerisium hingga kopernisium dan flerovium serta livermorium, hanya ada jika disintesis di laboratorium. Dari 94 unsur alami, 84 adalah primordial (unsur purba). Sepuluh lainnya muncul jika ada peluruhan dari unsur primordial.[1] Tidak ada unsur yang lebih berat daripada einsteinium (unsur 99) yang ditemui dalam jumlah besar dan bentuknya murni. Bahkan astatin (unsur 85); fransium (unsur 87) hanya terdeteksi dalam bentuk emisi cahaya dari jumlah mikroskopis (300.000 atom).[6]
Tampilan lain
| Tampilan tabel periodik | |
|---|---|
| Lantanida dan aktinida dipisah (kiri; 18 kolom) dan dimasukkan dalam tabel utama (kanan; 32 kolom) | |
Namun, berdasarkan sifat kimia dan fisika unsur-unsur, banyak struktur tabel alternatif yang telah dibuat.
Metode pengelompokan
Golongan
Golongan atau famili adalah kolom vertikal dalam tabel periodik. Golongan biasanya mempunyai tren periodik yang lebih bermakna daripada periode dan blok, yang akan dijelaskan kemudian. Teori mekanika kuantum modern dari struktur atom menjelaskan bahwa unsur-unsur yang berada dalam golongan yang sama memiliki konfigurasi elektron yang sama pada kulit valensinya.[8] Akibatnya, unsur-unsur dalam golongan yang sama cenderung memiliki sifat serta tren yang jelas seiring dengan kenaikan nomor atom.[9] Namun, dalam beberapa bagian tabel periodik, seperti blok-d dan blok-f, kesamaan horisontal lebih penting, atau lebih jelas daripada kesamaan vertikalnya.[10][11][12]Pada konvensi tatanama internasional, golongan diberi angka numerik dari 1 hingga 18 dari kolom paling kiri (logam alkali) hingga kolom paling kanan (gas mulia).[13] Sebelumnya, dikenal penomoran menggunakan angka Romawi. Di Amerika, angka Romawi diikuti dengan huruf "A" jika golongan berada dalam blok-s atau blok-p, atau "B" jika berada pada blok-d. Angka Romawi digunakan merujuk pada angka terakhir konvensi penamaan terkini (misal: unsur golongan 4 sebelumnya adalah IVB, dan golongan 14 sebelumnya adalah golongan IVA). Di Eropa, penggunaan abjad juga sama, kecuali: "A" digunakan jika golongan berada sebelum golongan 10, dan "B" digunakan untuk golongan 10 dan seterusnya. Selain itu, golongan 8, 9, dan 10 diperlakukan sebagai satu golongan berukuran tiga, telah diketahui secara umum yang diberi tanda golongan VIII. Pada tahun 1988, digunakan sistem penamaan IUPAC baru, dan nama golongan lama telah dianggap usang.[14]
Beberapa golongan ini telah memiliki nama trivial (non-sistematis), seperti terlihat pada tabel di bawah, meskipun jarang digunakan. Golongan 3–10 tidak memiliki nama trivial dan hanya merujuk pada nomor golongannya atau nama unsur teratas dalam golongan tersebut (misalnya, "golongan skandium" untuk Golongan 3), karena hanya memiliki sedikit kesamaan tren vertikal.[13]
Unsur-unsur dalam golongan yang sama cenderung menunjukkan pola tertentu dalam hal jari-jari atom, energi ionisasi, dan elektronegativitas. Dari atas ke bawah dalam satu golongan, jari-jari atom bertambah. Oleh karena lebih banyak tingkat energi yang terisi, elektron valensi ditemukan lebih jauh dari inti atom. Dari atas ke bawah, masing-masing unsur yang berurutan memiliki energi ionisasi yang lebih rendah karena lebih mudah melepaskan elektron akibat ikatan atom yang kurang kuat. Demikian pula, dari atas ke bawah elektronegativitasnya juga semakin kecil akibat penambahan jarak antara elektron valensi dengan inti atom.[15] Terdapat perkecualian terhadap tren ini, misalnya yang terjadi pada golongan 11 di mana elektronegativitas meningkat dalam satu golongan dari atas ke bawah.[16]
| [sembunyikan] Golongan dalam tabel periodik | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Nomor golongana | 1 | 2 | 3d | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | ||
| Mendeleev (I–VIII) | I | II | III | IV | V | VI | VII | VIII | I | II | III | IV | V | VI | VII | b | ||||
| CAS (AS, susunan A-B-A) |
IA | IIA | IIIB | IVB | VB | VIB | VIIB | VIIIB | IB | IIB | IIIA | IVA | VA | VIA | VIIA | VIIIA | ||||
| IUPAC lama (Eropa, susunan A-B) |
IA | IIA | IIIA | IVA | VA | VIA | VIIA | VIII | IB | IIB | IIIB | IVB | VB | VIB | VIIB | 0 | ||||
| Nama trivial | Logam alkali | Logam alkali tanah | Logam koine | Logam volatile | Ikosagene | Kristalogene | Pnictogen | Kalsogen | Halogen | Gas mulia | ||||||||||
| Nama menurut unsur | Gol. Litium | Gol. Berilium | Gol. Skandium | Gol. Titanium | Gol. Vanadium | Gol. Krom | Gol. Mangan | Gol. Besi | Gol. Kobalt | Gol. Nikel | Gol. Tembaga | Gol. Seng | Gol. Boron | Gol. Karbon | Gol. Nitrogen | Gol. Oksigen | Gol. Fluor | Gol Helium / Neon | ||
| Periode 1 | Hc | He | ||||||||||||||||||
| Periode 2 | Li | Be | B | C | N | O | F | Ne | ||||||||||||
| Periode 3 | Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||
| Periode 4 | K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | ||
| Periode 5 | Rb | Sr | d | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | |
| Periode 6 | Cs | Ba | La–Yb | Lud | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | |
| Periode 7 | Fr | Ra | Ac–No | Lrd | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Uut | Fl | Uup | Lv | Uus | Uuo | |
| a Nomor penggolongan modern menurut IUPAC (saat ini). | ||||||||||||||||||||
| b Meskipun tidak termasuk dalam tabel asli Mendeleev, Mendeleev kemudian (1902) menerima bukti keberadaan gas mulia, dan menempatkan mereka terpisah pada "golongan 0". | ||||||||||||||||||||
| c Hidrogen (H), meskipun terdapat pada golongan 1, tetapi tidak termasuk dalam logam alkali. | ||||||||||||||||||||
| d Golongan 3: Tergantung dari sumbernya, lutetium (Lu) dan lawrensium (Lr) dapat dimasukkan; lantanum (La) dan aktinium (Ac) dapat dimasukkan; blok-f (dengan 15 lantanida dan 15 aktinida) dapat dimasukkan. | ||||||||||||||||||||
| e Nama golongan ini tidak direkomendasikan oleh IUPAC. | ||||||||||||||||||||
Periode
Periode adalah baris horizontal dalam tabel periodik. Meskipun golongan lebih menggambarkan tren periodik, tetapi ada beberapa bagian di mana tren horizontal lebih signifikan daripada tren vertikal. Seperti pada blok-f, di mana lantanida dan aktinida membentuk dua seri unsur horizontal yang substansial.[17]Unsur-unsur dalam periode yang sama menunjukkan tren jari-jari atom, energi ionisasi, afinitas elektron, dan elektronegativitas. Dari kiri ke kanan dalam periode yang sama, jari-jari atom biasanya menyusut. Hal ini terjadi karena masing-masing unsur yang berurutan menambah proton dan elektron, yang menyebabkan elektron tertarik lebih dekat ke inti atom.[18] Penurunan jari-jari atom ini juga menyebabkan energi ionisasi meningkat dari kiri ke kanan dalam satu periode. Semakin kuat ikatan suatu unsur, semakin banyak energi yang diperlukan untuk melepas elektron. Elektronegativitas meningkat sesuai kenaikan energi ionisasi karena elektron tertarik ke inti atom.[15] Afinitas elektron juga menunjukkan kecenderungan serupa dalam periode yang sama. Logam (periode sebelah kiri) umumnya memiliki afinitas elektron yang lebih rendah daripada non logam (periode sebelah kanan), dengan pengecualian pada gas mulia.[19]
Blok
Kiri ke kanan: blok-s, -f, -d, -p dalam tabel periodik
Logam, metaloid, dan nonlogam
Logam, metaloid, nonlogam, dan unsur dengan sifat kimia tak diketahui dalam tabel periodik. Beberapa sumber tidak sepakat dengan klasifikasi beberapa unsur ini.
Logam dan nonlogam dapat diklasifikasikan lebih lanjut ke dalam subkategori yang menunjukkan gradasi sifat dari logam ke nonlogam, untuk unsur-unsur dalam periode yang sama. Logam terbagi ke dalam logam alkali yang reaktif, logam alkali tanah yang kurang reaktif, lantanida dan aktinida, logam transisi, dan terakhir logam pasca-transisi dengan sifat fisika dan kimia paling lemah. Nonlogam dibagi menjadi nonlogam poliatomik, yang lebih mirip dengan metaloid; nonlogam diatomik, yang merupakan nonlogam esensial; dan gas mulia monoatomik, yang merupakan nonlogam dan hampir inert sempurna. Penggolongan terspesialisasi seperti logam refraktori dan logam mulia, yang merupakan (dalam kasus ini) logam transisi, juga diketahui[23] dan terkadang dicantumkan.[24]
Mengelompokkan unsur ke dalam kategori dan subkategori berdasarkan kesamaan sifat tidaklah sempurna. Terdapat suatu spektrum sifat di dalam masing-masing kategori dan tidaklah sulit untuk menentukan tumpangsuh pada perbatasan, seperti dalam kasus kebanyakan skema klasifikasi.[25] Berilium, misalnya, diklasifikasikan sebaga logam alkali tanah, meskipun memiliki kecenderungan amfoter secara kimia dan kebanyakan membentuk senyawa kovalen adalah dua hal yang melemahkan posisinya sebagai logam. Radon dikelompokkan sebagai nonlogam dan merupakan gas mulia tetapi mempunyai kecenderungan membentuk kation seperti logam. Dimungkinkan ada klasifikasi lainnya seperti pembagian unsur ke dalam kategori kelimpahan mineraloginya, atau struktur kristalnya. Pengkategorian unsur dimulasi sejak Hinrichs,[26] pada tahun 1869 menulis bahwa garis batas sederhana dapat digambarkan pada tabel periodik untuk menunjukkan unsur dengan kesamaan sifat, seperti logam dan nonlogam, atau unsur-unsur gas.
Tren periodik
Konfigurasi elektron
Perkiraan orde penyusunan kulit dan subkulit dengan kenaikan energi sesuai aturan Madelung
Tren tabel periodik (arah panah menunjukkan kenaikan)
Jari-jari atom
Nomor atom diplot terhadap jari-jari atom[n 3]
Elektron pada subkulit-4f, mulai dari cerium (unsur 58) hingga iterbium (unsur 70), tidak terlalu efektif melindungi kenaikan muatan inti karena subkulit-4f terlalu jauh dari inti atom. Unsur-unsur tepat setelah lantanida memiliki jari-jari atom yang lebih kecil daripada yang diperkirakan dan hampir sama dengan jari-jari atom unsur-unsur tepat di atasnya.[30] Oleh karena itu, hafnium secara virtual memiliki jari-jari atom dan (sifat kimia) seperti zirkonium, dan tantalum memiliki jari-jari atom yang sama dengan niobium, dan selanjutnya. Hal ini dikenal sebagai kontraksi lantanida. Pengaruh kontraksi lantanida terpantau hingga platina (unsur 78), setelah ditutupi oleh efek relativistik yang dikenal sebagai efek pasangan inert.[31] Kontraksi blok-d, yang memiliki pengaruh sama antara blok-d dan blok-p, kurang begitu dikenal dibandingkan kontraksi lantanida, tetapi menimbulkan akibat yang serupa.[30]
Energi ionisasi
Energi ionisasi: masing-masing periode dimulai dari yang terkecil pada logam alkali, hingga yang terbesar pada gas mulia
Kecenderungan periodisasi dari energi ionisasi
Lonjakan besar energi ionisasi terjadi saat melepaskan satu elektron dari konfigurasi gas mulia (kulit elektron lengkap). Magnesium, misalnya, dua energi ionisasi pertama yang sudah dijelaskan di atas digunakan untuk melepaskan dua elektron 3s, dan energi ionisasi ketiga jauh lebih besar yaitu 7.730 kj/mol, untuk menghilangkan sebuah elektron 2p dari konfigurasi Mg2+ yang mirip neon. Lonjakan serupa juga terjadi pada energi ionisasi atom-atom baris ketiga lainnya.[31]
Elektronegativitas
Grafik yang menunjukkan kenaikan electronegativitas sebanding dengan kenaikan nomor atom dalam satu golongan
Terdapat beberapa pengecualian dari aturan umum ini. Galium dan germanium memiliki elektronegativitas yang lebih tinggi daripada aluminium dan silikon karena kontraksi blok-d. Unsur-unsur periode empat tepat setelah baris pertama logam transisi memiliki jari-jari atom yang lebih kecil karena elektron-3d tidak efektif melindungi kenaikan muatan inti, dan ukuran atam yang lebih kecil berkorelasi dengan elektronegativitas yang lebih tinggi.[16] Anomali elektronegativitas timbal yang lebih besar daripada talium dan bismut nampaknya lebih disebabkan pada pengumpulan data (dan ketersediaan data)—termasuk metode kalkulasi—karena metode Pauling tidak menunjukkan kejanggalan tren untuk unsur-unsur tersebut.[34]
Afinitas elektron
Ketergantungan afinitas elektron pada nomor atom.[35]
Nilainya secara umum meningkat untuk periode yang sama, puncaknya ada
pada golongan halogen sebelum menurun drastis pada gas mulia. Contoh
puncak terlokalisasi dapat dilihat pada hidrogen, logam alkali dan unsur golongan 11
karena kecenderungan melengkapi kulit-s (dengan kulit 6s pada emas
distabilkan oleh efek relativistik dan keberadaan subkulit 4f yang
terisi penuh). Efek lokalisasi dapat dilihat pada logam alkali tanah,
dan nitrogen, fosfor, mangan serta renium akibat kulit-s terisi penuh,
atau kulit-p atau -d yang setengah terisi.[36]
Afinitas elektron umumnya meningkat sepanjang periode. Hal ini disebabkan oleh terisinya kulit valensi atom; sebuah atom golongan 17 membebaskan energi lebih besar daripada atom golongan 1 untuk menarik elektron karena atom-atom golongan 17 memiliki kulit valensi yang hampir penuh sehingga lebih stabil.[37]
Kecenderungan afinitas elektron menurun sepanjang golongan dari atas ke bawah sudah diperkirakan. Elektron tambahan akan memasuki orbital yang lebih jauh dari inti atom. Oleh karena elektron ini kurang tertarik oleh inti atom, maka pelepasan energinya juga lebih kecil ketika ditambahkan. Meski demikian, dalam satu golongan dari atas ke bawah, sekitar sepertiga unsur mengalami anomali, yaitu unsur-unsur yang lebih berat memiliki afinitas elektron yang lebih tinggi daripada unsur-unsur yang lebih ringan. Sebagian besar, hal ini akibat dari kurangnya perlindungan dari elektron-elektron d dan f. Penurunan seragan afinitas elektron hanya berlaku pada atom-atom golongan 1.[38]
Karakter logam
Semakin kecil energi ionisasi, elektronegativitas, dan afinitas elektron, semakin kuat karakter logam yang dimiliki suatu unsur. Sebaliknya, karakter nonlogam meningkat sebanding dengan peningkatan sifat-sifat di atas.[39] Sesuai dengan tren periodik ketiga sifat ini, karakter logam cenderung menurun untuk unsur-unsur dalam periode (atau baris) yang sama dan, dengan beberapa penyimpangan (sebagian besar) akibat adanya efek relativistik,[40] cenderung meningkat dari atas ke bawah untuk unsur-unsur dalam golongan (atau kolom) yang sama. Sebagian besar unsur logam (seperti sesium dan fransium) berada pada bagian kiri bawah tabel periodik tradisional dan sebagian besar unsur nonlogam (oksigen, fluor, klorin) di bagian kanan atas. Kombinasi tren horizontal dan vertikal pada karakter logam menjelaskan garis pembatas seperti anak tangga untuk memisahkan antara logam dan non logam yang dapat dijumpai pada beberapa tabel periodik. Beberapa praktisi mengelompokkan unsur-unsur yang ada di sekitar garis batas tersebut sebagai metaloid.[41][42]Sejarah
Percobaan sistematisasi pertama
Penemuan unsur kimia dipetakan ke dalam tabel periodik (pra-, par- dan pasca-)
Pada tahun 1858, kimiawan Jerman August Kekulé mengamati bahwa karbon seringkali menggandeng empat atom karbon lain. Metana, misalnya, mempunyai satu atom karbon dan empat atom hidrogen. Konsep ini kelak dikenal sebagai valensi; unsur yang berbeda berikatan dengan sejumlah atom yang berbeda.[46]
Pada tahun 1862, Alexandre-Emile Béguyer de Chancourtois, geolog Perancis, mempublikasikan bentuk awal tabel periodik, yang disebutnya telluric helix atau sekrup. Ia adalah orang pertama yang mencatat periodisitas unsur-unsur. Dengan menyusun unsur dalam suatu spiral pada silinder menurut kenaikan berat atom, de Chancourtois menunjukkan bahwa unsur-unsur dengan kesamaan sifat terlihat muncul pada interval tertentu. Diagramnya mencantumkan pula beberapa ion dan senyawa sebagai tambahan, selain unsur-unsur. Makalahnya juga lebih banyak menggunakan istilah-istilah geologi daripada kimia, dan tidak menampilkan gambar; alhasil penelitiannya tidak menarik banyak pihak hingga diteruskan oleh Dmitri Mendeleev.[47]
Pada tahun 1864, Julius Lothar Meyer, kimiawan Jerman, mempublikasikan tabel berisi 44 unsur yang disusun berdasarkan valensi. Tabel tersebut menunjukkan bahwa unsur-unsur dengan kesamaan sifat kimia seringkali memiliki valensi yang sama.[48] Di tempat terpisah, William Odling (kimiawan Inggris) mempublikasikan suatu penyusunan 57 unsur, yang disusun berdasarkan berat atomnya. Dengan beberapa ketakteraturan dan kesenjangan, ia melihat apa yang tampaknya menjadi periodisitas berat atom antara unsur-unsur dan bahwa ini sesuai dengan 'pengelompokan yang sudah pernah diterima.'[49] Odling menyinggung ide hukum periodik tapi ia tidak mengembangkannya.[50] Ia kemudian mengusulkan (pada tahun 1870) klasifikasi unsur-unsur berbasis valensi.[51]
Tabel periodik Newlands, sperti yang dipersembahkan kepada Chemical Society pada 1866, dan berdasarkan pada hukum oktaf
Pada tahun 1867, Gustavus Hinrichs, kimiawan akademisi kelahiran Denmark yang menetap di Amerika, mempublikasikan sistem periodik spiral berdasarkan spektrum atom, berat atom dan kemiripan sifat kimia. Hasil karyanya dianggap idiosinkratis, tidak membumi dan berbelit-belit.[57][58]
Tabel Mendeleev
Dmitri Mendeleev
Tabel periodik Mendeleev versi 1869: Suatu percobaan pada sistem unsur. Disusun berdasarkan berat atom dan kesamaan sifat kimianya. Pengaturan awal yang disajikan dalam bentuk periode (vertikal), dan golongan (horizontal)
Pengakuan dan penerimaan yang diperoleh tabel Mendeleev berasal dari dua keputusan yang dibuatnya. Pertama ia meninggalkan beberapa lubang dalam tabel ketika ia menganggap bahwa unsur terkait belum diketemukan.[62] Mendeleev bukan kimiawan pertama yang melakukan ini, tetapi ia adalah yang pertama diakui menggunakan tren dalam tabel periodiknya untuk memprediksi sifat-sifat unsur yang hilang, seperti galium dan germanium.[63] Keputusan kedua adalah terkadang mengabaikan urutan yang dibuat berdasarkan berat atom dan mengganti dengan unsur di sebelahnya, seperti telurium dan iodin, agar tercapai klasifikasi yang lebih baik ke dalam famili kimianya. Akhirnya, pada tahun 1913, Henry Moseley menemukan nilai eksperimental muatan inti atau nomor atom masing-masing unsur, dan menunjukkan bahwa pengurutan model Mendeleev sebenarnya merujuk kepada kenaikan nomor atom.[64]
Pentingnya nomor atom pada penyusunan tabel periodik tidak diapresiasi hingga eksistensi dan sifat-sifat proton dan netron dipahami. Tabel periodik Mendeleev menggunakan berat atom dan bukan nomor atom untuk menyusun unsur-unsurnya. Informasi yang terukur presisi pada zaman Mendeleev. Berat atom sejauh ini cocok bagi sebagian besar kasus, mampu menyajikan prediksi sifat-sifat unsur-unsur yang hilang secara lebih akurat dibandingkan metode-metode lain yang telah diketahui. Penggantian metode ke nomor atom, memberikan urutan unsur berdasarkan bilangan bulat, dan Moseley memperkirakan bahwa unsur yang hilang (tahun 1913) antara aluminium (Z=13) dan emas (Z=79) adalah Z = 43, 61, 72 dan 75, yang akhirnya diketemukan. Urutan nomor atom masih digunakan hingga sekarang, bahkan sebagai dasar penelitian dan pembuatan produk sintetis baru.[65]
Versi kedua beserta pengembangannya
Tabel periodik Mendeleev 1871 dengan delapan golongan unsur. Garis putus-putus menandakan unsur yang belum diketahui tahun 1871.
Tabel periodik model delapan kolom, sudah diperbarui dengan seluruh unsur hingga yang ditemukan tahun 2015
Tampilan tabel periodik yang populer,[70] juga dikenal sebagai bentuk umum atau bentuk standar (seperti ditunjukkan dalam artikel ini), merupakan hasil karya Horace Groves Deming. Pada tahun 1923, Deming, kimiawan Amerika, mempublikasikan tabel periodik bentuk pendek (Mendeleev style) dan sedang (18-kolom).[71][n 6] Merck & Co. menyiapkan selebaran berisi tabel 18-kolom versi Deming pada tahun 1928, yang kemudian banyak beredar di sekolah-sekolah di Amerika. Pada tahun 1930an, tabel Deming muncul di buku penuntun dan ensiklopedia kimia. Ini juga didistribusikan selama beberapa tahun oleh Sargent-Welch Scientific Company.[72][73][74]
Seiring perkembangan teori mekanika kuantum modern tentang konfigurasi elektron dalam atom, semakin jelas bahwa masing-masing periode (baris) dalam tabel sesuai dengan pengisian elektron pada kulit kuantum. Semakin besar atom, semakin banyak sub kulit elektron yang dimiliki, akhirnya, semakin panjang periode yang harus dicantumkan pada tabel.[75]
Glenn T. Seaborg yang, pada tahun 1945, mengusulkan tabel periodik baru dengan meletakkan aktinida sebagai bagian dari seri blok-f kedua
Meskipun ada sejumlah kecil unsur-unsur transuranium terdapat secara alami,[1] tetapi kesemuanya pertama kali ditemukan di laboratorium. Produksinya telah memperluas tabel periodik secara signifikan. Transuranium pertama yang disintesis adalah neptunium (1939).[78] Oleh karena kebanyakan unsur-unsur transuranium sangat tidak stabil dan meluruh dengan cepat, tantangannya adalah mendeteksi dan melakukan karakterisasi segera setelah diproduksi. Ada kontroversi mengenai persaingan klaim penemuan untuk beberapa elemen. Hal ini membutuhkan tinjauan independen untuk menentukan pihak mana yang memiliki prioritas, dan berhak atas klaim tersebut. Unsur paling terkini yang diterima adalah flerovium (unsur 114) dan livermorium (unsur 116), keduanya diresmikan pada 31 Mei 2012.[79] Pada tahun 2010, kolaborasi Rusia–AS di Dubna, Oblast Moskwa, Rusia, mengaku telah mensintesis enam atom ununseptium (unsur 117), membuatnya sebagai pengakuan terkini.[80]
Pada 30 Desember 2015, unsur nomor 113, 115, 117, dan 118 diakui secara resmi oleh IUPAC, sehingga melengkapi baris ke-7 tabel periodik.[81] Nama dan simbol resmi untuk masing-masing unsur ini, yang akan menggantikan nama dan simbol sementara seperti ununpentium (Uup) untuk unsur nomor 115, diperkirakan akan diumumkan kemudian tahun 2016.
Tabel periodik yang berbeda
Variasi bentuk umum
Tipe I—La, Ac di bawah Y |
Tipe I: Sc, Y, La dan Ac. Lantanum dan aktinium berada dalam tabel utama, pada golongan 3, di bawah skandium dan itrium. Empat belas unsur golongan lantanida dan aktinida yang mengikutinya ditulis sebagai catatan kaki, untuk menghemat tempat. Ada dua baris berisi empat belas unsur, baris pertama dimulai dengan Ce dan diakhiri dengan Lu, baris kedua dimulai dengan torium dan diakhiri dengan lawrensium. Ini adalah varian yang paling umum.[83][n 8] Ini menekankan kesamaan dalam tren periodik turun menurun pada golongan 1, 2 dan 3, dengan memecah lantanida dan aktinida.[n 9]
Tipe II—Lu, Lr di bawah Y |
Tipe III—Tanda di bawah Y |
Ketiga varian berasal dari kesulitan bersejarah dalam menempatkan lantanida dalam tabel periodik, dan argumen posisi awal dan akhir unsur blok-f.[84] Telah dinyatakan bahwa argumen semacam itu adalah bukti bahwa, "adalah suatu kesalahan memecah sistem [periodik] menjadi blok-blok dengan pembatasan yang tajam."[85] Sama halnya, beberapa versi tabel tipe III telah dikritik karena menyiratkan bahwa kesemua 15 lantanida menempati kotak tunggal atau menempatkannya di bawah itrium,[n 12] melanggar prinsip dasar satu tempat, satu unsur.[86][n 13] Kontroversi tentang unsur yang layak menempati posisi Golongan 3 di bawah skandium dan itrium dibahas lebih lanjut dalam seksi Pertanyaan terbuka dan kontroversi artikel ini.
Tabel tipe II, sebagai varian umum, ditunjukkan bagian ikhtisar artikel ini. Jika dibandingkan dengan varian tipe I, "terdapat lebih sedikit pengecualian yang nyata pada pengisian seri orbital 4f reguler di antara anggota berikutnya."[87][n 14] Berbeda dengan varian tipe III, tidak ada ambiguitas pada komposisi golongan 3.
Struktur alternatif
Tabel periodik 32 kolom
Struktur alternatif yang populer[89] adalah versi Theodor Benfey (1960). Unsur-unsur disusun dalam spiral kontinu, dengan hidrogen berada di pusat spiral dan logam transisi, lantanida, serta aktinida berada pada semenanjungnya.[90]
Tabel periodik spiral versi Theodor Benfey
Beragam bentuk tabel periodik dapat dianggap sebagai peletakan dasar kontinum kimia-fisika.[97] Menjelang akhir kontinum kimia, dapat dijumpai, misalnya, Tabel Periodik versi kimiawan anorganik 'bandel'[98] Rayner-Canham (2002),[99] yang menekankan kecenderungan dan pola, serta sifat dan hubungan kimia yang tidak umum. Menjelang akhir kontinum fisika, muncul Tabel Periodik Kidal Janet (1928). Versi ini memiliki struktur yang menunjukkan hubungan erat dengan urutan pengisian kulit elektron dengan mekanika kuantum.[100] Di tengah-tengah kontinum adalah berbagai variasi bentuk umum atau standar tabel periodik. Hal ini dianggap sebagai ungkapan tren empiris yang lebih baik dalam hal keadaan fisik, konduktivitas listrik dan termal, serta bilangan oksidasi, dan sifat-sifat lainnya dengan mudah disimpulkan dari teknik tradisional laboratorium kimia.[101]
| [sembunyikan] Tabel periodik kidal Janet | ||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1s | H | He | ||||||||||||||||||||||||||||||
| 2s | Li | Be | ||||||||||||||||||||||||||||||
| 2p 3s | B | C | N | O | F | Ne | Na | Mg | ||||||||||||||||||||||||
| 3p 4s | Al | Si | P | S | Cl | Ar | K | Ca | ||||||||||||||||||||||||
| 3d 4p 5s | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | Rb | Sr | ||||||||||||||
| 4d 5p 6s | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | Cs | Ba | ||||||||||||||
| 4f 5d 6p 7s | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | Fr | Ra |
| 5f 6d 7p 8s | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | 113 | Fl | 115 | Lv | 117 | 118 | 119 | 120 |
| blok-f | blok-d | blok-p | blok-s | |||||||||||||||||||||||||||||
| Bentuk tabel periodik ini lebih kongruen dengan urutan pengisian kulit elektron, yang ditunjukkan dengan urutan pada batas kiri (dibaca dari atas ke bawah, dari kiri ke kanan). | ||||||||||||||||||||||||||||||||
Pertanyaan terbuka dan kontroversi
Unsur yang tidak diketahui sifat kimianya
Meskipun semua unsur hingga ununoktium telah ditemukan, untuk unsur-unsur di atas hassium (unsur 108), hanya copernicium (unsur 112) dan flerovium (unsur 114) yang telah diketahui sifat kimianya. Unsur lainnya dapat berperilaku secara berbeda dari apa yang diprediksi secara ekstrapolasi, karena efek relativistik. Misalnya, flerovium diprediksi menunjukkan sifat-sifat seperti gas mulia, meskipun terletak dalam golongan karbon.[102] Percobaan terkini telah membuktikan bahwa, flerovium memiliki sifat kimia seperti timbal, sebagaimana diperkirakan dari posisinya dalam tabel periodik.[103]Pengembangan tabel periodik
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| B. Tabel periodik pengembangan versi Fricke hingga unsur 184[104] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prediksi unsur dengan nomor atom terbesar
Jumlah unsur yang mungkin belum diketahui. Perkiraan awal yang dibuat oleh Elliot Adams pada tahun 1911, berdasarkan penyusunan unsur-unsur dalam masing-masing baris tabel periodik adalah: unsur dengan berat atom lebih besar daripada 256± (yang mungkin terletak di antara unsur 99 dan 100 untuk istilah saat ini) tidak mungkin ada.[107] Perkiraan teranyar adalah tabel periodik mungkin segera berakhir setelah pulau stabilitas,[108] yang diperkirakan berpusat di sekitar unsur 126, karena pengembangan tabel nuklida dan periodik dibatasi oleh garis tetes proton dan neutron.[109] Prediksi lain berakhirnya tabel periodik berkisar pada unsur 128 oleh John Emsley,[1] pada unsur 137 oleh Richard Feynman,[110] dan pada unsur 155 oleh Albert Khazan.[1][n 17]Model Bohr
Model Bohr menunjukkan kesulitan untuk atom-atom dengan nomor atom lebih besar daripada 137, karena unsur apapun dengan nomor atom lebih dari 137 akan membutuhkan elektron-elektron 1s nya untuk bergerak melebihi kecepatan cahaya, c.[111] Oleh karena itu, model non-relativistik Bohr tidak akurat jika diterapkan untuk unsur-unsur semacam ini.Persamaan relativistik Dirac
Persamaan relativistik Dirac menghadapi masalah untuk unsur-unsur lebih dari 137 proton. Untuk unsur semacam ini, fungsi gelombang kondisi dasar Dirac adalah berosilasi, dan tidak ada celah antara spektra energi positif dan negatif, seperti dalam paradoks Klein.[112] Kalkulasi yang lebih akurat memperhitungkan pengaruh ukuran terbatas pada inti atom yang menandakan bahwa ikatan energi pertama melebihi batasan yang dimungkinkan untuk unsur-unsur lebih dari 173 proton. Untuk unsur-unsur yang lebih berat, jika orbital terdalam (1s) tidak terisi, medan listrik inti akan menarik elektron keluar ruang hampa, yang menghasilkan emisi positron spontan.[113] Meski demikian, hal ini tidak terjadi jika orbital terdalam terisi, sehingga unsur 173 bukanlah akhir dari tabel periodik.[114]Penempatan hidrogen dan helium
Jika mengikuti konfigurasi elektron, hidrogen (konfigurasi elektron 1s1) dan helium (1s2) seharusnya terletak di golongan 1 dan 2, di atas litium ([He]2s1) dan berilium ([He]2s2).[20] Namun, penempatan tersebut jarang digunakan di luar konteks konfigurasi elektron: Ketika gas mulia (yang kemudian disebut "gas inert") pertama kali diketemukan sekitar tahun 1900, mereka dikenal sebagai "golongan 0", merefleksikan tidak adanya reaktivitas kimia unsur-unsur ini yang diketahui pada saat itu, dan helium diletakkan di puncak golongan, karena memiliki ke-inert-an yang sama dengan seluruh golongan tersebut. Oleh karena golongan berubah penomoran formalnya, kebanyakan penulis tetap meletakkan helium tepat di atas neon, dalam golongan 18; salah satunya adalah tabel IUPAC yang berlaku saat ini.[115]Sifat-sifat kimia hidrogen tidak terlalu dekat dengan logam-logam alkali, yang menempati golongan 1, dan berdasarkan hal tersebut, terkadang hidrogen diletakkan di tempat lain: alternatif yang paling umum adalah di golongan 17; salah satu faktor pertimbangannya adalah sifat hidrogen yang nonlogam monovalen, dan bahwa fluor (unsur yang terletak di puncak golongan 17) juga nonlogam monovalen. Terkadang, untuk menunjukkan bahwa hidrogen memiliki sifat-sifat baik seperti logam alkali maupun halogen, hidrogen ditampilkan dalam dua kolom sekaligus.[116] Cara penyajian lain adalah meletakkan hidrogen di atsa karbon dalam golongan 14: dengan meletakkannya sedemikian, sangat cocok dengan kecenderungan kenaikan nilai potensial ionisasi dan afinitas elektron, dan tidak terlalu menyimpang dari tren elektronegativitas.[117] Terakhir, hidrogen kadang diletakkan terpisah dari golongan manapun; hal ini berdasarkan sifat-sifat hidrogen yang sangat berbeda dari golongan manapun: tidak seperti hidrogen, unsur golongan 1 lainnya menunjukkan sifat yang sangat logam; unsur-unsur golongan 17 umumnya membentuk garam (oleh sebab itu ada istilah "halogen"); unsur-unsur golongan lainnya menunjukkan sifat kimia multivalen. Unsur periode 1 lainnya, helium, terkadang juga diletakkan terpisah dari golongan manapun.[118] Sifat-sifat yang membedakan helium dengan gas mulia lainnya (meskipun sifat inert helium sangat dekat dengan neon dan argon[119]) adalah bahwa dalam kulit elektron tertutupnya, helium hanya memiliki dua elektron pada orbital terluarnya, sementara gas mulia lainnya memiliki delapan elektron.
Golongan yang termasuk dalam logam transisi
Definisi logam transisi, seperti diberikan oleh IUPAC, adalah unsur yang atomnya mempunyai sub-kulit d tak lengkap, atau yang dapat mengalami kenaikan tingkat oksidasi menjadi kation sehingga sub-kulit d menjadi tak lengkap.[120] Berdasarkan definisi ini, seluruh unsur dalam golongan 3–11 adalah logam transisi. Definisi IUPAC menyebabkan golongan 12, antara lain seng, kadmium dan raksa, harus keluar dari kategori logam transisi.Beberapa kimiawan memperlakukan kategori "unsur blok-d" dan "logam transisi" secara bergantian, sehingga golongan 3–12 termasuk dalam logam transisi. Dalam hal ini, unsur-unsur golongan 12 diperlakukan sebagai kasus khusus dari logam transisi yang mana elektron-elektron d nya tidak biasa terlibat dalam ikatan kimia. Penemuan baru-baru ini yang mengungkapkan raksa dapat menggunakan elektron d nya dalam pembentukan raksa(IV) fluorida (HgF4) telah mendorong beberapa komentator untuk menyarankan agar raksa dapat diterima sebagai logam transisi.[121] Komentator lain, seperti Jensen,[122] telah berargumentasi bahwa pembentukan senyawa seperti HgF4 hanya dapat terjadi di bawah kondisi abnormal. Oleh karenanya, raksa tidak dapat diterima sebagai logam transisi berdasarkan interpretasi apapun dalam istilah makna ilmiah umum.[122]
Kimiawan lainnya lebih jauh mengeluarkan unsur-unsur golongan 3 dari definisi logam transisi. Mereka melakukannya berdasarkan bahwa unsur-unsur golongan 3 tidak membentuk ion apapun dengan kulit d sebagian terisi, dan oleh karenanya tidak menunjukkan karakteristik kimia logam transisi.[123] Dalam kasus ini, hanya golongan 4–11 yang diterima sebagai logam transisi.
Unsur-unsur periode 6 dan 7 pada golongan 3
Meskipun skandium dan itrium adalah dua unsur pertama pada golongan 3 identitas dua unsur berikutnya belum dituntaskan. Mereka adalah lantanum dan aktinium; atau lutetium dan lawrencium. Ada argumen kimia dan fisika yang kuat yang mendukung penyusunan terakhir[124][125] tetapi tidak semua penulis telah diyakinkan.[86] Kebanyakan kimiawan tidak menyadari bahwa ada kontroversi.[126]Telah dikemukakan bahwa tata letak ini berasal dari tahun 1940-an, dengan munculnya tabel periodik berdasarkan konfigurasi elektron unsur-unsurnya dan gagasan elektron pembeda. Konfigurasi sesium, barium dan lantanum adalah [Xe]6s1, [Xe]6s2 dan [Xe]5d16s2. Lantanum memiliki elektron pembeda 5d dan ini memapankannya "pantas berada dalam golongan 3 sebagai anggota pertama blok-d untuk periode 6."[129] Satu set konfigurasi elektron yang konsisten selanjutnya terlihat dalam golongan 3: skandium [Ar] 3d14s2, itrium [Kr] 4d15s2 dan lantanum [Xe] 5d16s2. Masih dalam periode 6, iterbium memiliki konfigurasi elektron [Xe]4f135d16s2 dan lutetium [Xe]4f145d16s2, "menghasilkan elektron pembeda 4f untuk lutetium dan menegaskan ia sebagai anggota terakhir blok-f untuk periode 6."[129]
Beberapa tabel, termasuk tabel pada web IUPAC,[133][n 18] menambahkan catatan kaki untuk dua posisi di bawah skandium dan itrium, dan menampilkan keduanya, lantanum dan lutetium, serta aktinium dan lawrencium sebagai bagian dari unsur deret lantanida dan aktinida. Pengaturan ini menekankan kesamaan sifat-sifat kimia 15 elemen lantanida (La-Lu) lebih penting daripada argumentasi konfigurasi elektron. Unsur-unsur dalam deret aktinida memiliki perilaku yang lebih beragam. Unsur-unsur di awal deret menunjukkan beberapa kesamaan dengan logam transisi; aktinium dan selanjutnya lebih mirip lantanida.[134]
Bentuk optimal
Banyaknya bentuk tabel periodik yang berbeda memicu pertanyaan: adakah bentuk tabel periodik yang optimal atau definitif (pasti)? Jawaban atas pertanyaan ini adalah bergantung pada bagaimana melihat kebenaran periodisitas kimia yang muncul pada unsur-unsur tersebut, apakah kebenaran mutlak, atau hanya interpretasi manusia yang disesuaikan dengan kebutuhan, keyakinan dan selera pengamat. Dasar obyektif periodisitas kimia akan menjawab pertanyaan tentang lokasi hidrogen dan helium, serta komposisi golongan 3. Kebenaran mendasar semacam ini, jika ada, kemungkinan belum ditemukan. Tanpa kebenaran mendasar tersebut, banyaknya perbedaan bentuk tabel periodik dapat dianggap sebagai variasi tema periodisitas kimia, yang masing-masing mengeksplorasi dan memberikan penekanan pada aspek, sifat, perspektif dan hubungan antar unsur yang berbeda.[n 19] Adanya tabel periodik resmi versi standard atau menengah dan panjang diperkirakan adalah hasil dari pengaturan tata letak dengan keseimbangan fitur yang baik dalam arti mudah dibuat dan berukuran layak, serta dapat menggambarkan urutan atom dan tren periodik.[50][135]Lihat pula
- Golongan tabel periodik
- Periode tabel periodik
- Deret kimia
- Blok tabel periodik
- Tabel isotop (lengkap)
- Tabel isotop (terbagi)
- Penemuan unsur-unsur kimia
- Kelimpahan unsur
- Lagu unsur
- Nama unsur sistematik IUPAC.
- Tabel Periodik Cosmochemical dari Unsur-Unsur dalam Tata Surya
- Sejarah Nama Subkulit s,p,d,f
- Tabel konfigurasi elektron
- Kolektor unsur
- Daftar unsur kimia
- Daftar artikel yang berhubungan dengan tabel periodik
- Tabel nuklida
Catatan kaki
- ^ Unsur-unsur yang ditemukan pertama kali dari sintesis dan kemudian ditemukan di alam adalah technetium (Z=43), promethium (61), astatin (85), neptunium (93), dan plutonium (94).
- ^ Terdapat inkonsistensi dan beberapa ketakteraturan dalam konvensi ini. Helium diletakkan dalam blok-p tetapi pada kenyataannya adalah unsur blok-s, dan (sebagai contoh) subkulit-d dalam blok-d telah terisi penuh saat golongan 11 tercapai, bukan golongan 12.
- ^ Gas mulia, astatin, fransium, dan semua unsur yang lebih berat daripada americium tidak dimasukkan, karena ketiadaan data.
- ^ Sementara fluor adalah unsur paling elektronegatif menurut skala Pauling, neon adalah unsur paling elektronegatif menurut skala lainnya, seperti skala Allen.
- ^ John Emsley, dalam bukunya, Nature’s Building Blocks, menuliskan bahwa amerisium, kurium, berkelium dan californium (unsur 95–98) dapat berada secara alami sebagai renik dalam bijih uranium akibat penangkapan netron dan peluruhan beta. Namun penegasan ini tampaknya kurang didukung bukti independen. Lihat: Emsley J. (2011). Nature's Building Blocks: An A-Z Guide to the Elements (New ed.). New York, NY: Oxford University Press, p. 109.
- ^ Tabel 18-kolom versi Deming dapat dilihat di Adams' 16-column Periodic Table of 1911. Adam menghilangkan unsur tanah jarang dan 'unsur radioaktif' (yaitu aktinida) dari tabel utama dan menggantikannya dengan tanda sisipan untuk menghemat tempat (unsur tanah jarang antara Ba dan eka-Yt; unsur radioaktif antara eka-Te dan eka-I). Lihat: Elliot Q. A. (1911). "A modification of the periodic table". Journal of the American Chemical Society. 33(5): 684–688 (687).
- ^ Baris tabel periodik ekstra-panjang kedua, untuk mengakomodasi unsur-unsur yang telah diketahui dan belum terungkap dengan berat atom lebih besar daripada bismut (thorium, protaktinium dan uranium misalnya), telah didalilkan sejak 1892. Sebagian besar peneliti menganggap bahwa unsur-unsur ini analog dengan unsur transisi seri ketiga: hafnium, tantalum, wolfram. Keberadaan seri transisi dalam kedua, dalam bentuk aktinida, tidak diterima hingga ditetapkannya kesamaan struktur elektronnya dengan lantanida. Lihat: van Spronsen, J. W. (1969). The periodic system of chemical elements. Amsterdam: Elsevier. p. 315–316, ISBN 0-444-40776-6.
- ^ Clark dan White mengumpulkan koleksi teks kimia umum mereka untuk mengamati tren tabel periodik dari tahun 1948 hingga 2008. Dari 35 teks mereka menemukan 11 tipe I; 9 tipe II; dan 9 tipe III. Lebih dari 20 tahun terakhir sejak periode survey hitungannya adalah 9 tipe I; 9 tipe II dan 2 tipe III. Lihat: Clark R.W. & White G.D. (2008), "The flyleaf periodic table", Journal of Chemical Education 85 (4): 497.
- ^ Contoh tabel tipe I lihat Atkins et al. (2006), Shriver & Atkins Inorganic Chemistry (4th ed.), Oxford: Oxford University Press • Myers et al. (2004), Holt Chemistry, Orlando: Holt, Rinehart & Winston • Chang R. (2000), Essential Chemistry (2nd ed.), Boston: McGraw-Hill
- ^ Contoh tabel tipe II lihat Rayner-Canham G. & Overton T. (2013), Descriptive Inorganic Chemistry (6th ed.), New York: W. H. Freeman and Company • Brown et al. (2009), Chemistry: The Central Science (11th ed.), Upper Saddle River, New Jersey: Pearson Education • Moore et al. (1978), Chemistry, Tokyo: McGraw-Hill Kogakusha
- ^ Contoh tabel tipe III lihat Housecroft C.E. & Sharpe A.G. (2008), Inorganic Chemistry (3rd ed.), Harlow: Pearson Education • Halliday et al. (2005), Fundamentals of Physics (7th ed.), Hoboken, New Jersey: John Wiley & Sons • Nebergall et.al. (1980), General Chemistry (6th ed.), Lexington: D.C. Heath and Company
- ^
- Jensen menulis: "Dua kotak di bawah Sc dan Y ... masing-masing mengandung baik nomor atom 57-71 dan 89-103 atau simbol La-Lu dan Ac-Lr, seolah-olah menunjukkan bahwa semua 30 elemen dalam catatan kaki masuk dalam hanya dua kotak. Memperluas tabel semacam itu menjadi tabel 32 kolom akan memerlukan sesuatu untuk meregangkan kotak Sc dan Y sehingga mereka menjangkau semua 15 kolom yang dimasukkan."Tabel periodik bentuk panjang, dihasilkan dari penempatan lantanida dan aktinida ke dalam Golongan 3, di bawah Sc dan Y. Dijelaskan oleh Jensen (lihat catatan) sebagai "antik" dan interpretasi yang tidak akan dianjurkan oleh seorang ahli kimia anorganik modern, kecuali "mereka telah kehilangan semua hubungan antara dasar pengembangan tabel periodik dan fakta-fakta kimia."
- ^ Habashi mencoba untuk mengatasi keberatan ini dengan menempatkan 15 lantanida pada 15 kotak vertikal dari posisi tabel periodik di bawah itrium. Lihat: Habashi F. (2015), "A New Look at the Periodic Table", European Chemical Bulletin 4 (1): 1–7 (see p. 5).
- ^ Untuk tabel periodik Sc-Y-La-Ac dan Sc-Y-Lu-Lr, dua tabel berikut membandingkan jumlah elektron f yang ideal untuk unsur periode 6 dan 7 dalam blok-f dengan jumlah nyata elektron f. Terdapat 20 penyimpangan dalam tabel pertama dibandingkan 9 dalam tabel kedua.
TABEL 1: Tabel periodik Sc-Y-La-Ac
TABEL 2: Tabel periodik blok-f Sc-Y-Lu-Lr menunjukkan konfigurasi elektron (arsir abu-abu muda = cocok dengan jumlah ideal elektron f; arsir abu-abu tua = penyimpangan)Periode 6 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Elektron-f ideal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Jumlah aktual 1 3 4 5 6 7 7 9 10 11 12 13 14 14 Periode 7 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Jumlah aktual 0 2 3 4 6 7 7 9 10 11 12 13 14 14
Untuk jumlah elektron-f ideal pada Tabel 1 lihat: Newell, S.B. (1977), 'Chemistry: An Introduction, Boston: Little, Brown and Company, p. 196. Untuk Tabel 2 lihat: Brown et.al. (2009), Chemistry: The Central Science (11th ed.), Upper Saddle River, New Jersey: Pearson Education, pp. 207, 208–210. Dalam kedua kasus perhitungannya adalah tetap dengan konfigurasi keadaan dasar ideal untuk unsur blok-f adalah [Gas mulia](n–2)f xns2 dengan n = nomor periode dan x = bilangan bulat dari 1 hingga 14. Lihat: Rouvray D.H. (2015), "The Surprising Periodic Table: Ten Remarkable Facts", di B. Hargittai & I. Hargittai, Culture of Chemistry: The Best Articles on the Human Side of 20th-Century Chemistry from the Archives of the Chemical Intelligencer, New York: Springer Science+Business Media, pp. 183–193 (190).Periode 6 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Elektron-f ideal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Jumlah aktual 0 1 3 4 5 6 7 7 9 10 11 12 13 14 Periode 7 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Jumlah aktual 0 0 2 3 4 6 7 7 9 10 11 12 13 14
- ^ Lihat The Internet database of periodic tables untuk melihat varian-varian ini.
- ^ Penggambaran animasi tabel periodik Giguère yang banyak beredar di internet (termasuk dari sini) digambarkan secara salah, karena tidak memasukkan hidrogen dan helium. Giguère meletakkan hidrogen, di atas litium, dan helium di atas berilium. Lihat: Giguère P.A. (1966). "The "new look" for the periodic system". Chemistry in Canada 18 (12): 36–39 (see p. 37).
- ^ Karol (2002, p. 63) berpendapat bahwa efek gravitasi akan menjadi signifikan ketika nomor atom semakin besar secara astronomis, dengan demikian mengatasi fenomena other ketakstabilan inti super-masif lainnya, dan bahwa bintang neutron (dengan nomor atom pada orde 1021) bisa dianggap sebagai unsur terberat yang dikenal di jagat raya. Lihat: Karol, P.J. (2002), "The Mendeleev–Seaborg periodic table: Through Z = 1138 and beyond", Journal of Chemical Education 79 (1): 60–63
- ^ Meskipun tabel bentuk ini terkadang dirujuk sebagai tabel periodik "yang diakui" atau "resmi" IUPAC, "IUPAC belum menyetujui semua bentuk spesifik tabel periodik…" Lihat: Leigh, G.J. (January–February 2009), "Periodic Tables and IUPAC", Chemistry International 31 (1)
- ^ Scerri, salah satu otorita terkenal dalam sejarah tabel periodik (Sella 2013), dihargai karena konsep bentuk optimal tabel periodik tetapi akhir-akhir ini berubah pikiran dan sekarang mendukung nilai-nilai pluralitas tabel periodik. Lihat: Sella, A. (2013), "An elementary history lesson", New Scientist 2929 (51) dan Scerri, E. (2013), Is there an optimal periodic table and other bigger questions in the philosophy of science
Referensi
- ^ a b c d e f Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements (New ed.). New York, NY: Oxford University Press. ISBN 978-0-19-960563-7.
- ^ Greenwood, pp.24–27
- ^ Gray, p. 6
- ^ Discovery and Assignment of Elements with Atomic Numbers 113, 115, 117 and 118. IUPAC (2015-12-30)
- ^ Koppenol, W. H. (2012), "Naming of New Elements (IUPAC Recommendations 2002)" (PDF), Pure and Applied Chemistry 74 (5): 787–791, doi:10.1351/pac200274050787
- ^ Silva, Robert J. (2006). "Fermium, Mendelevium, Nobelium and Lawrencium". Di Morss; Edelstein, Norman M.; Fuger, Jean. The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 1-4020-3555-1.
- ^ Gray, p. 11
- ^ Scerri 2007, p. 24
- ^ Messler, R. W. (2010), The essence of materials for engineers, Sudbury, MA: Jones & Bartlett Publishers., p. 32, ISBN 0-7637-7833-8.
- ^ Bagnall, K.W. (1967). "Recent advances in actinide and lanthanide chemistry". Di Fields, P.R.; Moeller, T. Advances in chemistry, Lanthanide/Actinide chemistry. Advances in Chemistry 71. American Chemical Society. pp. 1–12. doi:10.1021/ba-1967-0071. ISBN 0-8412-0072-6.
- ^ Day, M.C., Jr.; Selbin, J. (1969). Theoretical inorganic chemistry (2nd ed.). New York: Nostrand-Rienhold Book Corporation. p. 103. ISBN 0-7637-7833-8.
- ^ Holman, J.; Hill, G.C (2000). Chemistry in context (5th ed.). Walton-on-Thames: Nelson Thornes. p. 40. ISBN 0-17-448276-0.
- ^ a b Leigh, G.J. (1990), Nomenclature of Inorganic Chemistry: Recommendations 1990, Blackwell Science, ISBN 0-632-02494-1
- ^ Fluck, E. (1988), "New Notations in the Periodic Table" (PDF), Pure Appl. Chem. (IUPAC) 60 (3): 431–436, doi:10.1351/pac198860030431
- ^ a b Moore, p. 111
- ^ a b c Greenwood, p. 30
- ^ Stoker, Stephen H. (2007), General, organic, and biological chemistry, New York: Houghton Mifflin, p. 68, ISBN 978-0-618-73063-6, OCLC 52445586
- ^ Mascetta, Joseph (2003), Chemistry The Easy Way (4th ed.), New York: Hauppauge, p. 50, ISBN 978-0-7641-1978-1, OCLC 52047235
- ^ Kotz, John; Treichel, Paul; Townsend, John (2009), Chemistry and Chemical Reactivity, Volume 2 (7th ed.), Belmont: Thomson Brooks/Cole, p. 324, ISBN 978-0-495-38712-1, OCLC 220756597
- ^ a b Gray, p. 12
- ^ Jones, Chris (2002), d- and f-block chemistry, New York: J. Wiley & Sons, p. 2, ISBN 978-0-471-22476-1, OCLC 300468713
- ^ Silberberg, M.S. (2006), Chemistry: The molecular nature of matter and change (4th ed. ed.), New York: McGraw-Hill, p. 536, ISBN 0-07-111658-3
- ^ Manson, S.S.; Halford, G.R. (2006), Fatigue and durability of structural materials, Materials Park, Ohio: ASM International, p. 376, ISBN 0-87170-825-6
- ^ Bullinger, Hans-Jörg (2009), Technology guide: Principles, applications, trends, Berlin: Springer-Verlag, p. 8, ISBN 978-3-540-88545-0
- ^ Jones, B.W. (2010), Pluto: Sentinel of the outer solar system, Cambridge: Cambridge University Press, pp. 169–71, ISBN 978-0-521-19436-5
- ^ Hinrichs, G.D. (1869), "On the classification and the atomic weights of the so-called chemical elements, with particular reference to Stas's determinations", Proceedings of the American Association for the Advancement of Science 18 (5): 112–124
- ^ a b Myers, R. (2003), The basics of chemistry, Westport, CT: Greenwood Publishing Group, pp. 61–67, ISBN 0-313-31664-3
- ^ a b Chang, Raymond (2002), Chemistry (7th ed.), New York: McGraw-Hill, pp. 289–310; 340–42, ISBN 0-07-112072-6
- ^ Greenwood, p. 27
- ^ a b Jolly, W.L. (1991), Modern Inorganic Chemistry (2nd ed.), McGraw-Hill, p. 22, ISBN 978-0-07-112651-9
- ^ a b c Greenwood, p. 28
- ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Electronegativity".
- ^ Pauling, L (1932), "The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms", Journal of the American Chemical Society 54 (9): 3570–3582, doi:10.1021/ja01348a011
- ^ Allred, A.L. (1960), "Electronegativity values from thermochemical data", Journal of Inorganic and Nuclear Chemistry (Northwestern University) 17 (3–4): 215–221, doi:10.1016/0022-1902(61)80142-5
- ^ Huheey, Keiter & Keiter, p. 42
- ^ Siekierski, Slawomir; Burgess, John (2002). Concise chemistry of the elements. Chichester: Horwood Publishing. pp. 35‒36. ISBN 1-898563-71-3.
- ^ a b Chang, pp. 307–309
- ^ Huheey, Keiter & Keiter, pp. 42, 880–81
- ^
- ^ Huheey, Keiter & Keiter, pp. 880–85
- ^ Sacks, O. (2009), Uncle Tungsten: Memories of a chemical boyhood, New York: Alfred A. Knopf, pp. 191, 194, ISBN 0-375-70404-3
- ^ Gray, p. 9
- ^ Siegfried, Robert (2002), From elements to atoms a history of chemical composition, Philadelphia, Pennsylvania: Library of Congress Cataloging-in-Publication Data, p. 92, ISBN 0-87169-924-9
- ^ a b Ball, p. 100
- ^ Horvitz, Leslie (2002), Eureka!: Scientific Breakthroughs That Changed The World, New York: John Wiley, p. 43, ISBN 978-0-471-23341-1, OCLC 50766822
- ^ van Spronsen, J.W. (1969), The periodic system of chemical elements, Amsterdam: Elsevier, p. 19, ISBN 0-444-40776-6
- ^ "Alexandre-Emile Bélguier de Chancourtois (1820-1886)", Annales des Mines history page (dalam bahasa Perancis)
- ^ Venable, pp. 85–86; 97
- ^ Odling, W. (2002), "On the proportional numbers of the elements", Quarterly Journal of Science 1 (643): 642–648
- ^ a b Scerri, Eric R. (2011), The periodic table: A very short introduction, Oxford: Oxford University Press, ISBN 978-0-19-958249-5
- ^ Kaji, M. (2004). "Discovery of the periodic law: Mendeleev and other researchers on element classification in the 1860s". Di Rouvray, D.H.; King, R. Bruce. The periodic table: Into the 21st Century. Research Studies Press. pp. 91–122 (95). ISBN 0-86380-292-3.
- ^ Newlands, John A.R. (20 August 1864), "On Relations Among the Equivalents", Chemical News 10: 94–95
- ^ Newlands, John A.R. (18 August 1865), "On the Law of Octaves", Chemical News 12: 83
- ^ Bryson, Bill (2004), A Short History of Nearly Everything, Black Swan, pp. 141–142, ISBN 978-0-552-15174-0
- ^ Scerri 2007, p. 306
- ^ Brock, W.H.; Knight, D.M. (1965), The Atomic Debates: 'Memorable and Interesting Evenings in the Life of the Chemical Society' 56 (1), Isis (The University of Chicago Press), pp. 5–25, doi:10.1086/349922
- ^ Scerri 2007, pp. 87, 92
- ^ Kauffman, George B. (March 1969), "American forerunners of the periodic law", Journal of Chemical Education 46 (3): 128–135 (132), Bibcode:1969JChEd..46..128K, doi:10.1021/ed046p128
- ^ Mendelejew, Dimitri (1869), "Über die Beziehungen der Eigenschaften zu den Atomgewichten der Elemente", Zeitschrift für Chemie (dalam bahasa Jerman): 405–406
- ^ Venable, pp. 96–97; 100–102
- ^ Ball, pp. 100–102
- ^ Pullman, Bernard (1998), The Atom in the History of Human Thought, Translated by Axel Reisinger, Oxford University Press, p. 227, ISBN 0-19-515040-6
- ^ Ball, p. 105
- ^ Atkins, P.W. (1995), The Periodic Kingdom, HarperCollins Publishers, Inc., p. 87, ISBN 0-465-07265-8
- ^ Samanta, C.; Chowdhury, P. Roy; Basu, D.N. (2007). "Predictions of alpha decay half lives of heavy and superheavy elements". Nucl. Phys. A 789: 142–154. arXiv:nucl-th/0703086. Bibcode:2007NuPhA.789..142S. doi:10.1016/j.nuclphysa.2007.04.001.
- ^ Scerri 2007, p. 112
- ^ Kaji, Masanori (2002), "D.I. Mendeleev's Concept of Chemical Elements and the Principle of Chemistry" (PDF), Bull. Hist. Chem (Tokyo Institute of Technology) 27 (1): 4–16
- ^ Adloff, Jean-Pierre; Kaufman, George B. (25 September 2005), "Francium (Atomic Number 87), the Last Discovered Natural Element", The Chemical Educator
- ^ Hoffman, D.C.; Lawrence, F.O.; Mewherter, J.L.; Rourke, F.M. (1971), "Detection of Plutonium-244 in Nature", Nature 234 (5325): 132–134, Bibcode:1971Natur.234..132H, doi:10.1038/234132a0
- ^ Gray, p. 12
- ^ Deming, Horace G (1923). General chemistry: An elementary survey. New York: J. Wiley & Sons. pp. 160, 165.
- ^ Abraham, M; Coshow, D; Fix, W. Periodicity:A source book module, version 1.0 (PDF). New York: Chemsource, Inc. p. 3.
- ^ Emsley, J (7 March 1985). "Mendeleyev's dream table". New Scientist: 32–36(36).
- ^ Fluck, E (1988). "New notations in the period table". Pure & Applied Chemistry 60 (3): 431–436 (432). doi:10.1351/pac198860030431.
- ^ Ball, p. 111
- ^ Scerri 2007, pp. 270‒71
- ^ Masterton, William L.; Hurley, Cecile N.; Neth, Edward J., Chemistry: Principles and reactions (7th ed.), Belmont, CA: Brooks/Cole Cengage Learning, p. 173, ISBN 1-111-42710-0
- ^ Ball, p. 123
- ^ Barber, Robert C.; Karol, Paul J; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich W. (2011), "Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)", Pure Appl. Chem. 83 (7): 1485, doi:10.1351/PAC-REP-10-05-01
- ^ Эксперимент по синтезу 117-го элемента получает продолжение [Experiment on sythesis of the 117th element is to be continued] (in Russian). JINR. 2012
- ^ "Periodic table's seventh row finally filled as four new elements are added". The Guardian. 3 January 2016. Diakses tanggal 4 January 2016.
- ^ Clark, R.W.; White, G.D. (2008). "The Flyleaf Periodic Table". Journal of Chemical Education 85 (4): 497. doi:10.1021/ed085p497.
- ^ Myers, R.T.; Oldham, K.B.; S., Tocci (2004). Holt Chemistry. Orlando: Holt, Rinehart and Winston. p. 130. ISBN 0-03-066463-2.
- ^ Thyssen, P.; Binnemans, K (2011). Gschneidner Jr., K.A.; Bünzli, J-C.G; Vecharsky, Bünzli, ed. Accommodation of the Rare Earths in the Periodic Table: A Historical Analysis. Handbook on the Physics and Chemistry of Rare Earths 41 (Amsterdam: Elsevier). pp. 1–94. ISBN 978-0-444-53590-0.
- ^ Stewart, P.J. (2008). "The Flyleaf Table: An Alternative". Journal of Chemical Education 85 (11): 1490. doi:10.1021/ed085p1490.
- ^ a b Scerri, E. (2012), "Mendeleev's Periodic Table Is Finally Completed and What To Do about Group 3?", Chemistry International 34 (4)
- ^ Brown, T.L.; LeMay Jr, H.E; Bursten, B.E. (2009). Chemistry: The Central Science (11 ed.). Upper Saddle River, New Jersey: Pearson Education. pp. 207, 208–210. ISBN 9780132358484.
- ^ a b Scerri 2007, p. 20
- ^ Emsely, J; Sharp, R (21 June 2010), "The periodic table: Top of the charts", The Independent
- ^ Seaborg, Glenn (1964), "Plutonium: The Ornery Element", Chemistry 37 (6): 14
- ^ Mark R. Leach. "1925 Courtines' Periodic Classification"
- ^ Mark R. Leach. "1949 Wringley's Lamina System".
- ^ Mazurs, E.G. (1974), Graphical Representations of the Periodic System During One Hundred Years, Alabama: University of Alabama Press, p. 111, ISBN 978-0-8173-3200-6
- ^ Mark R. Leach. "1996 Dufour's Periodic Tree"
- ^ Mark R. Leach. "1989 Physicist's Periodic Table by Timothy Stowe"
- ^ Bradley, David (20 July 2011), "At last, a definitive periodic table?", ChemViews Magazine, doi:10.1002/chemv.201000107
- ^ Scerri 2007, pp. 285‒86
- ^ Scerri 2007, p. 285
- ^ Mark R. Leach. "2002 Inorganic Chemist's Periodic Table".
- ^ Scerri, Eric (2008), "The role of triads in the evolution of the periodic table: Past and present", Journal of Chemical Education 85 (4): 585–89 (see p.589), Bibcode:2008JChEd..85..585S, doi:10.1021/ed085p585
- ^ Bent, H.A.; Weinhold, F. (2007), "Supporting information: News from the periodic table: An introduction to "Periodicity symbols, tables, and models for higher-order valency and donor–acceptor kinships"", Journal of Chemical Education 84 (7): 3–4, doi:10.1021/ed084p1145
- ^ Schändel, Matthias (2003), The Chemistry of Superheavy Elements, Dordrecht: Kluwer Academic Publishers, p. 277, ISBN 1-4020-1250-0
- ^ Sceri 2011, pp. 142-143
- ^ Fricke, B.; Greiner, W.; Waber, J. T. (1971). "The continuation of the periodic table up to Z = 172. The chemistry of superheavy elements". Theoretica chimica acta (Springer-Verlag) 21 (3): 235–260. doi:10.1007/BF01172015. Diakses tanggal 28 November 2012.
- ^ Frazier, K. (1978), "Superheavy Elements", Science News 113 (15): 236–238, doi:10.2307/3963006, JSTOR 3963006
- ^ Pyykkö, Pekka (2011), "A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions", Physical Chemistry Chemical Physics 13 (1): 161–168, Bibcode:2011PCCP...13..161P, doi:10.1039/c0cp01575j, PMID 20967377
- ^ Elliot, Q.A. (1911), "A modification of the periodic table", Journal of the American Chemical Society 33 (5): 684–688 (688), doi:10.1021/ja02218a004
- ^ Glenn Seaborg (c. 2006), "transuranium element (chemical element)", Encyclopædia Britannica.
- ^ Cwiok, S; Heenen, P.H.; Nazarewicz, W. (2005), "Shape coexistence and triaxiality in the superheavy nuclei", Nature 433 (7027): 705–9, Bibcode:2005Natur.433..705C, doi:10.1038/nature03336, PMID 15716943
- ^ Column: The crucible, Ball, Philip in Chemistry World, Royal Society of Chemistry, Nov. 2010
- ^ Eisberg, R.; Resnick, R. (1985), Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, Wiley
- ^ Bjorken, J.D.; Drell, S.D. (1964), Relativistic Quantum Mechanics, McGraw-Hill
- ^ Greiner, W.; Schramm, S. (2008), American Journal of Physics 76, pp. 509., and references therein
- ^ Ball, Philip (November 2010), Would Element 137 Really Spell the End of the Periodic Table? Philip Ball Examines the Evidence, Royal Society of Chemistry
- ^ IUPAC (2013-05-01), "IUPAC Periodic Table of the Elements" (PDF), iupac.org. (IUPAC)
- ^ Seaborg, Glenn Theodore (1945), "The chemical and radioactive properties of the heavy elements", Chemical English Newspaper 23 (23): 2190–2193
- ^ Cronyn, Marshall W. (August 2003), "The Proper Place for Hydrogen in the Periodic Table", Journal of Chemical Education 80 (8): 947–951, Bibcode:2003JChEd..80..947C, doi:10.1021/ed080p947
- ^ Greenwood, throughout the book
- ^ Lewars, Errol G (2008-12-05), Modeling Marvels: Computational Anticipation of Novel Molecules, Springer Science & Business Media, pp. 69–71, ISBN 9781402069734
- ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "transition element".
- ^ Xuefang Wang; Lester Andrews; Sebastian Riedel; Martin Kaupp (2007), "Mercury Is a Transition Metal: The First Experimental Evidence for HgF4", Angew. Chem. Int. Ed. 46 (44): 8371–8375, doi:10.1002/anie.200703710, PMID 17899620
- ^ a b William B. Jensen (2008), "Is Mercury Now a Transition Element?", J. Chem. Educ. 85 (9): 1182–1183, Bibcode:2008JChEd..85.1182J, doi:10.1021/ed085p1182
- ^ Rayner-Canham, G; Overton, T., Descriptive inorganic chemistry (4th ed.), New York: W H Freeman, pp. 484–485, ISBN 0-7167-8963-9
- ^ Thyssen, P.; Binnemanns, K (2011), "1: Accommodation of the rare earths in the periodic table: A historical analysis", di Gschneidner Jr., K.A; Büzli, J-C.J.; Pecharsky, V.K., Handbook on the Physics and Chemistry of Rare Earths 41, Amsterdam: Elsevier, pp. 80–81, ISBN 978-0-444-53590-0
- ^ Keeler, J.; Wothers, P. (2014), Chemical Structure and Reactivity: An Integrated Approach, Oxford: Oxford University, p. 259, ISBN 978-0-19-9604135
- ^ Castelvecchi, Davide (8 April 2015), "Exotic atom struggles to find its place in the periodic table", Nature News
- ^ Emsley, J. (2011), Nature's Building Blocks (new ed.), Oxford: Oxford University, p. 651, ISBN 978-0-19-960563-7
- ^ See, for example: "Periodic Table". Royal Society of Chemistry.
- ^ a b c d e William B. Jensen (1982), "The Positions of Lanthanum (Actinium) and Lutetium (Lawrencium) in the Periodic Table", J. Chem. Educ. 59 (8): 634–636, doi:10.1021/ed059p634
- ^ See, for example: Brown, T.L.; LeMay Jr., H.E.; Bursten, B.E.; Murphy, C.J. (2009), Chemistry: The Central Science (11th ed.), Upper Saddle River, New Jersey: Pearson Education, p. endpapers, ISBN 0-13-235848-4
- ^ Scerri, E (2015), "Five ideas in chemical education that must die - part five", educationinchemistryblog (Royal Society of Chemistry), diakses tanggal Sep 19, 2015,
It is high time that the idea of group 3 consisting of Sc, Y, La and Ac is abandoned
- ^ Jensen, W.B. (2015), Some Comments on the Position of Lawrencium in the Periodic Table (PDF)
- ^ "Periodic Table of the Elements". International Union of Pure and Applied Chemistry.
- ^ Owen, S.M. (1991), A Guide to Modern Inorganic Chemistry, Harlow, Essex: Longman Scientific & Technical, p. 190, ISBN 0-58-206439-2
- ^ Francl, Michelle (May 2009), "Table manners", Nature Chemistry 1 (2): 97–98, Bibcode:doi:10.1038/nchem.183 2009NatCh...1...97F. doi:10.1038/nchem.183, PMID 21378810
Daftar pustaka
- Mazurs, E.G. (1974), Graphical Representations of the Periodic System During One Hundred Years, Alabama: University of Alabama Press, ISBN 0-8173-3200-6
- Bouma, J. (1989), "An Application-Oriented Periodic Table of the Elements", J. Chem. Ed. 66 (9): 741, doi:10.1021/ed066p741
Pranala luar
| Cari tahu mengenai Tabel periodik pada proyek-proyek Wikimedia lainnya: | |
| Definisi dan terjemahan dari Wiktionary | |
| Gambar dan media dari Commons | |
| Berita dari Wikinews | |
| Kutipan dari Wikiquote | |
| Teks sumber dari Wikisource | |
| Buku dari Wikibuku | |
- (Indonesia) Tabel periodik (Situs Web Kimia Indonesia)
- (Inggris) IUPAC Periodic Table of the Elements
- (Inggris) "Presentation forms of the periodic table". Western Oregon University.
- (Inggris) "A Brief History of the Development of Periodic Table". Western Oregon University.
- (Inggris) "Visual Periodic Table". ChemSoc.org.
- (Inggris) Barbalace, Kenneth L., "Biochemical Periodic Tables". KLBProductions.com.
- (Inggris) "Periodic table (professional edition)". WebElements.
- (Inggris) Counterman, Craig, "Periodic Table of the Elements : Atomic Number". MIT Course 3.091.
- (Inggris) Holler, F. James, and John P. Selegue, "Periodic Table of Comic Books". Department of Chemistry, University of Kentucky. 1996-2002.
- (Inggris) Heilman, Chris, "The Pictorial Periodic Table". (Includes alternate styles: Stowe, Benfey, Zmaczynski, Giguere, Tarantola, Filling, Mendeleev)
- (Inggris) "Periodic table". Los Alamos National Laboratory's Chemistry Division.
- (Inggris) "Periodic Table of the Fermi Surfaces of Elemental Solids". The Fermi Surface Database
- (Inggris) "Interactive NMR Frequency Map". Texas A&M.
- (Inggris) "Periodic Table Elements". Israel Science and Technology Directory. 1999-2004. (sorted by physical characteristics)
- (Inggris) Barthelmy, David, "Periodic table" Mineralogy Database. (mineral emphasis)
- (Inggris) Gray, Theodore, Wooden Periodic Table Table (with samples)
- (Inggris) "Periodic table applet". Dartmouth College. (Java)
- (Inggris) Jacobs, Bob, "Periodic Tables (in case you were thinking that the Internet needed one more)". The Chemistry Coach.
- (Inggris) "PeriodicTable.com".
- (Inggris) "New Periodic Table From Poland
| [sembunyikan] Tabel periodik (besar) | |||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | ||||||||||||||||
| 1 | H | He | |||||||||||||||||||||||||||||||
| 2 | Li | Be | B | C | N | O | F | Ne | |||||||||||||||||||||||||
| 3 | Na | Mg | Al | Si | P | S | Cl | Ar | |||||||||||||||||||||||||
| 4 | K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | |||||||||||||||
| 5 | Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | |||||||||||||||
| 6 | Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | |
| 7 | Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og | |
|
|
|||||||||||||||||||||||||||||||||
|
||
[tutup]

Tidak ada komentar:
Posting Komentar